

ConnecTied Documentation

www.connectied.com

Physical World Computing World

http://www.connectied.com/

ECE 4180 Project

ConnecTied Page | 1

Contents

1. Problem Statement .. 2

2. Solution ... 2

3. Development .. 3

3.1 Marker Detection ... 3

3.2 Gesture Recognition ... 4

3.3 Gesture Mapping .. 7

3.4 User Interface ... 7

3.4.1 Modes ... 8

3.4.2 UI Layout ... 9

Appendix A: Control flow diagram for the implemented system ...10

ECE 4180 Project

ConnecTied Page | 2

1. Problem Statement

With the advent of internet in almost every part of human activity, to access a computing device, one still

has to interact with a range of I/O peripherals which are typically not quite in the “human” domain. In

other words, the user has to adapt to the limitations of the computing devices in terms of their integration

with the everyday objects he/she interacts with. Thus, our world is divided into the physical and

computing domains with the I/O devices filling the gap.

2. Solution

The project aims at bridging the gap between the two domains by replacing the traditional ways of

interacting with the computer with a more human centric one wherein the user’s environment itself

becomes the output medium and user’s gestures becomes the input for the computer.

The team proposed to develop ConnecTied, a portable spatial augmented reality device that would project

digital information onto the user’s physical world which can further be controlled using human gestures,

objects and environment. Thus, allowing users to interact and control the computing world without any

interface barrier of traditional I/O Devices. The simplest implementation would be the user using the wall

in front of him/her as a screen, the desk as the keyboard (with keys projected on it), supplemented by

voice and gestures to interact with the computing world powered by a wearable processor. The following

system level schematic captures the basic implementation details of the proposed project.

Figure 1. Block diagram of sub components

ECE 4180 Project

ConnecTied Page | 3

3. Development

During the semester, the team developed a computer vision system capable of recognizing human

gestures using colored marker caps on the fingers. Each of these gestures were mapped to an action to be

performed such as moving the mouse pointer, clicking, taking a picture etc. These actions constitute one

of the ways the user would interact with the proposed system. The other way in which user can interact

with the system is by using objects in the physical environment. The implemented system can use the

image of the object in the user’s surrounding and use it as a keyword to do online search using Google

Image Search. The system is also capable of reading and decoding of barcodes in the image. In terms of

scalability, the implemented system is a standalone application package which can be used on any

windows laptop with a webcam without the requirement of any additional hardware.

To tackle the projection problem, Kinect sensor was used for depth-sensing to detect planar surfaces

suitable for use as a screen, combined with a small mobile computing device and a pico projector to

project a screen onto the detected plane. The colored camera on a Kinect could be also be used to

recognize gestures instead of a webcam.

Appendix A consists of the control flow diagram for the implemented system. The following sections

reiterate the journey of development, along with challenges faced and implementation details of each of

the major component of the project.

3.1 Marker Detection

The basis of gesture recognition is the maker points on the user’s fingers. The implementation takes in the

input from the camera feed and processed in a series of steps to obtain accurate values for the markers in

the video using the following series of steps.

Figure 2. Marker Detection Process Flow

ECE 4180 Project

ConnecTied Page | 4

The live image feed is converted to HSV color scale and pre-determined thresholds are applied to get the

binary image with all the colored markers. The binary image is then subjected to erosion to get rid of the

noise. The eroded image is the dilated and passed through openCV’s contour detection method to get the

centroids of all the detected markers. These values are then added to the buffer with the marker points

from the last 30 frames.

One of the major drawbacks of using HSV values if that the system is dependent on the lighting

conditions of the environment. Various methods like background reduction and exposure manipulation

were tried to limit this phenomenon. One of the future goals would be to further increase the robustness of

the system.

3.2 Gesture Recognition

Once the marker coordinates were determined they were used to provide input to the gesture recognition

system. The initial version of this program was developed in MATLAB using existing libraries and

Hidden Markov models. The next step uses Hidden Markov models to classify gestures. It is an algorithm

that, given a sequence of results, helps to find a sequence of states or events leading to the result. The

HMM first needs to be trained to recognize various gestures so that it can compare the input feed with the

known gestures and try to find the best match. It then compares the live input feed against the trained

gestures and computes a result. If the result is greater than the set threshold, the gesture is recognized. The

following figures show the training and testing dataset of the two basic gestures.

Figure 3. HMM working on 'O' gesture. Figure 4. HMM working on 'Z' gesture.

ECE 4180 Project

ConnecTied Page | 5

However, as the team further advanced in the project it was realized that the MATLAB version would be

unsuitable for the small, embedded system intended as an end-platform, as it would require either a

running instance of MATLAB or a system executable compiled from MATLAB along with the

MATLAB runtime libraries. The team initially attempted to compile the code from MATLAB, but found

compile times to be prohibitively large for fast code iteration (~45 mins - 1 hr).

Once a proof-of-concept was working in MATLAB, the team began the transition into C++. The team

opted to use OpenCV, which, handily enough, comes with an installer and has its own (very poorly

documented) built-in matrix framework. Machine learning libraries such as Shogun or MLpack were

initially considered, but these ultimately proved too time-consuming to install and use. There was limited

documentation available and most of them were not cross compatible. Finally, CVHmm library was used

and after sleepless nights, HMMs were implemented on C++. But it was soon realized that HMM training

was taking too much time for all the gestures to be determined within a reasonable range of error.

Therefore, it was decided that we would adopt a custom approach that was called ‘Vector Modelling’.

The vector modelling approach divides the image feed into a grid of bins and analyzes the coordinates of

various markers over the last few frames. It further calculates the movement vectors for each of the

markers. Then it tries to do basic curve fitting to find the gesture being performed based on a set of pre-

defined gesture model. The following flow chart explains the overview of the process.

Figure 5. Gesture Detection process flow.

ECE 4180 Project

ConnecTied Page | 6

 Swipe Left Swipe Right

 Swipe Down Swipe Up

 Circle Pinch

Figure 6. Some of the implemented gestures.

ECE 4180 Project

ConnecTied Page | 7

3.3 Gesture Mapping

The next step implemented was to tie the detected gestures to ActionListeners, so that as soon as the

gesture is recognized the associated action is performed. All the other gestures were tied to different

actions using windows API depending on the state of the application. For ex: swipe left in picture mode

takes a screenshot. The basic action of moving the mouse pointer and clicking by pinching was kept

universal throughout the application. The following figure describes the various actions linked to each

gesture.

Figure 7. Gesture Mapping to actions.

3.4 User Interface

The team also developed a user interface in VB.net. This served as a central hub that users could use to

enter different “modes,” supporting different sets of gestures. For instance, the camera mode supports a

gesture to take and save a picture, and the Google search mode supports a gesture to take a picture and

perform a reverse image search on it. The same gesture may perform different actions in different modes.

Users may return to the hub at any time from a mode by just clicking the back button.

Mouse control was also an important part of the application. The user may use the red marker cap to

move the mouse, and pinch red and blue fingers together to left-click. This easily enables other actions

that normally use the mouse, such as drawing or drag-and-drop.

ECE 4180 Project

ConnecTied Page | 8

3.4.1 Modes

Currently the following five modes have been implemented successfully:

Table 1. UI Modes

Shopping Mode

User Input: Image from the camera

Action: Google Image Search

Paint Mode

User Input: Mouse Move, Pinch and click

Action: Draw on custom paint application

Barcode Mode

User Input: Image from the camera with

barcode

Action: Decode barcode and display

information

Web Mode

User Input: Mouse Move, Pinch and click

Action: Browse Web

Photo Mode

User Input: Photo Gesture

Action: Take a self shot

ECE 4180 Project

ConnecTied Page | 9

3.4.2 UI Layout

Figure 8. The User Interface Layout

ECE 4180 Project

ConnecTied Page | 10

Appendix A: Control flow diagram for the implemented system

